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Abstract. We establish several new inequalities for real functions that are the restriction 
to the real ads of conformal maps of the nppcr half-plane into itself. Our various results 
involve the average derivatives, geometric mean derivatives, Mss-ratios and Schwarzian 
derivatives of such functions. Connections with the hyperbolic metric and theory of 
monotone matrix funtions are mentioned. Applications to conformal field theory, two- 
dimensional phase transitions and special functions are made. 

1. Introduction 

In this paper we consider real functions that are restrictions to the real axis of 
conformal maps of the upper half-plane into itself. Several new inequalities involving 
average derivatives, geometric mean derivatives, cross-ratios and Schwarzian deriva- 
tives of such functions are presented. Our method of derivation, based on harmonic 
function theory, may be understood via simple electrostatic arguments. Alternate 
derivations of some of our results, making use of the hyperbolic distance or the theory 
of monotone matrix functions, are mentioned. A few applications to conformal field 
theory for phase transitions in two dimensions and special functions are made. We 
also point out a connection with previous research on scattering theory. 

2. Derivations 

In this section we derive the inequalities. Our method is a straightforward application 
of harmonic function theory. The basis of our results is the fact that at a given point, 
the potential of a positive point charge in a two-dimensional region with vanishing 
boundary conditions must decrease if the region is shrunk. 

We also mention alternate derivations for some of the inequalities from hyperbolic 
geometry or the theory of monotone matrix functions. Thus, in what follows, 
theorems 1 and 2 are already known. They are included here to lay the groundwork 
for theorem 3 and its consequences. These, to our knowledge, are new. 

Let D denote the upper half of the z-plane and let z,, L ~ E  D .  Consider the function 
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where the asterisk denotes complex conjugation. The real part of this, 

where z1 = x l  + iyl, is interpretable as the electrostatic potential (in two dimensions) of 
a positive point charge of strength 2x located at z2=x2+iy2 with Y = O  on the 
boundary r of D (i.e. the entire real axis including the point 2, = m).  

Now let w =  w(z) be any conformal mapping of D into a subset w(D), D =  w(D) 
and consider the function 

(3) 

where w1 = u1 + iul, is the potential of a positive p' :harge of strength 7n located at 
w2=%+iu2 with CP=O on the boundary w(T) of w(D). By hypothesis, this boundary 
can include part of the real axis but must not extend below it. 

Note that here, and at many points below, we are considering the points zlr z, as 
dependent variables, k e d  via the inuerse of the conformal map w by the location of 
the charge w2 and field view w1 in the w plane. The function Y appears in this context 
in an auxiliary role, via (4), in expressing the potential CP in the region w(D) .  

Finally, for comparison we consider the function 

with w3eD. Its real part, 

where w3 = u3 + io,, is the potential of a positive point charge of strength Z z  located at 
w 2 = ~ + i u 2 w i t h  0 = 0 o n  the entire real axis (including w3=m).  

Now since the vanishing boundary condition for CP defines a region enclosed by the 
corresponding region for 0, at a given point El>@. This is exactly the content of 

Theorem I. 
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is the potential in w (D) due to zero charge in W ( D )  with 9 = 8 on the boundary w ( r )  
of the mapped w(D) .  From (6) we see that O(wl)SO for every point w1 on w ( r ) .  
Therefore E, which can achieve its minimum only on the boundary w(T)  of w(D) ,  
must be 2 0 for all w, E ~(0). The desired result (7) then follows from equations (Z), 
(4), (6) and the monotonicity of the In function. As mentioned, this theorem can be 
understood as the statement that, with vanishing boundary conditions, the potential of 
a positive charge in the upper half-plane decreases if we shrink the half-plane. 

Remark. Theorem 1 may also be established by consideration of the hyperbolic 
distance 

In the upper half-plane this is the distance between two points measured with the 
hyperbolic or Poincar6 metric ds~=dsz /y2  [l]. For a map of the unit circle into itself, 
the hyperbolic distance cannot increase [Z]. By a coordinate transformation this result 
also holds in the half-plane so that p ( w ( z l ) , w ( z z ) ) ~ p ( z l , z z ) .  Equation (7) then 
follows immediately since the quantitites compared are monotonic functions of p ,  i.e. 

The proof that p cannot increase follows from (and is in fact equivalent to [3]) the 
Schwarz-Pick lemma. The Schwarz lemma, in tum, is a consequence of the maximum 
principle for analytic functions, which is cental in our proof of theorem 1. 

Next, specialize to conformal mappings w which take at least two points ( x l , x z )  of 
the real z axis into the points (ulr u2) of the real w axis. Then we are in a position to 
prove : 

Theorem 2. (Geometric mean value inequality): 

where the prime denotes differentiation. Note that the conditions of the theorem 
ensure that all quantities in (10) are real. 

Proof. Consider equation (7) with zj=x,+iy,, i =  1,2.  Let yi+O, so that 

where X=lx l -xz l .  Write wj=uj+iuj, let U=(u,-u,I, and note that ui+u,'yj. 
Substituting (11) and its analogue for w-plane quantities into (7) leads immediately to 
the result (see figure 1). Note that the second term on the RHS of (11) is proportional 
to the interaction energy in the infinite plane of a dipole of moment yI at x1 with one of 
moment yz at xz. Transforming this arrangement to the w plane changes the separation 
of the dipoles and multiplies each moment by U', due to the rescaling of disances. 
Hence (10) may be understood as the statement that the conformal map increases the 
dipole interaction energy in the infinite plane. 

Remark. Theorem 2 also follows from the classic work on monotone matrix functions 
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Figure 1. The geometry of lheorems 1-3. 

by Liiwner [4] (for recent references see [S, 61). For a function to be matrix monotone, 
it is necessary and sufficient that its analytic continuation maps the upper half-plane 
into itself. Another necessary and sufficient condition is that the kernel 

constructed from such a function be positive semi-definite for points of the type 
considered. Hence the determinant of K is non-negative, and (10) follows immedia- 

Theorem 2 may be generalized as follows. Consider a serond analytic function 
s = s ( z ) ,  s=q+ir ,  that maps D into a subset of the upper half-plane D z , s ( D )  2 w(D) .  
Assume the boundary w ( r )  of w(D) and the boundary s(T) of s(D) share at least two 
points. Take the common boundary points to be (U,, 4) on the real axis. Place a 
charge at w2 and consider the potential at w1 in each region, as above. Denote the 
potential ins(D) by X. By simple adoption of the proof of theorem 1, in w(D) ,  
the smaller region. Hence 

tely (151, p 552). 

where g is the inverse of s so that wi=s(gi). Now let zi=xi+iyi, as above, and set 
g; = e, + ifi, so that (w,, wJ tend to the common boundary points (U,, &) as yi +O (see 
figure 1). Expanding wi = s (e; + ifi) and wi = w (xi+ iy;) and comparing the results leads 
immediately tofi=(uj/qnyi, where ql=q’(ei). Comparing this with (12) results in 

Theorem 3. 

1 e, - e2 I (q : q 9 1 ‘ 2 ~  Jx, -x2J ( U ;  U;)”’. (13) 
The sense of the inequality in (13) reflects the fact that the map w contracts more 

than s. If we take s = z ,  theorem 3 reduces to theorem 2. We emphasize again that ei 
and xi are considered as functions of U, in (13). via the relations u;=u(xi)=q(ei), 
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i=  1,2. To our knowledge, theorem 3 and its consequences, such as theorem 4, are 
new. 

The conditions on theorem 3 may be loosened somewhat. If the two common 
boundary points are not on the real axis, (13) holds for appropriately rotated maps. It 
is not necessary that s(D) (or w ( D ) )  be a subset of the half-plane, however, s must be 
such that s(D) includes w(D)  and does not overlap itself. In general, some quantities 
in (13) may be complex, so that a rotation is necessary, in addition one can have (after 
rotation) sign(q i) = - sign(q k) and similarly for I(, so that a minus sign is needed inside 
the square root. 

Next, assume that w and s share a tinite region of common boundary points along 
the real axis. The region may be composed of disjoint pieces. Let h be the inverse of U, 
i.e. x=h(u) .  Using this function and e=g(q ) ,  the inverse of s, it is easy to re-express 
(13) as 

(14) 
a’ln Ig(uJ-g(U31 a 2 W ( u l )  - h ( d  

au,au, au,au, 
> 

where use has been made of the fact that q (ei) = ui. At this point it may be helpful to 
refer to figure 1, where the various functions ad variables are illustrated. Now 
consider, for any four values of an arbitrary function f ,  the cross-ratio 

Successively integrating (14) between ul=Zuz and upGu4 then leads to, under the 
(strong) conditions of theorem 3, 
Theorem 4. (Cross-ratio inequality): 

Here, for the integrations over U to be possible, the limits of integration (U,, t+) and 
(y, u4) must each belong to a single contiguous common boundary region. In deriving 
(16), we have taken advantage of the monotonicity of g or h in any such region, which 
follows directly from theorem 2. In addition, we have set &<U,. This and the 
monotonicity ensure that the cross-ratios are positive-otherwise (16) (as well as the 
next two inequalities) holds with each C replaced by its absolute value. 

C(g)*C(h).  (16) 

One may similarly integrate theorem 2 directly with the result 

C(U) 3 C ( X ) .  (17) 
If we specialize to s= z, g= U and a general relation between the cross-ratios of a 
function and its inverse follows: 

C(u)*C(h). (18) 
Such a result is possible because of the condition that w shrinks the half-plane, i.e. 

It is interesting to consider the infinitesimal versions of some of OUI results. These 
D 2 w ( D ) .  

invole the Schwarzian derivative 
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First consider (10) and let x, = x I  + e. Then to leading order one finds 

Thus 

{u,x}==O. (21) 
This result also follows from (17) on taking the appropriate limit 171. 

The result (21) applies when U js  the real part of a map w that shrinks the half- 
plane and x is such that U is on the real axis. Since the Schwarzian derivative is 
invariant under rotations and translations, the question arises whether (21) is also a 
sufficient condition for the continuation of U to be such a map. It is easy to see that this 
is not the case by consideration of the Schwarz-Christoffel formula, which maps the 
upper half-plane into a polygon. The Schwarzian derivative near the comers of the 
polygon is dominated by a divergent term. A straightforward calculation shows that 
the coefficient of this term is positive if the interior angle a < n, but negative if a > n. 
Thus (21) fails near an indentation, even though the overall map shrinks the half- 
plane. Of course, the boundary of a polygon near an indentation cannot be mapped 
onto the real axis without part of the polygon extending below it. Note also that (17) 
and (21) are saturated for bilinear maps, which include the transformation of the half- 
plane into a circle. 

One may similarly reduce (16) to 

{hh,glaO. (22) 
Since Schwarzian derivatives follow the composition rule [7] 

(22) leads immediately to 

Ih, u } H g ,  4. (24) 
Making use of the general relation U, x } =  - {x,f)(af/ax)' [7] then gives 

{u,xl k.4 - 
u , 2  SQ'Z 

which involves the maps directly, instead of their inverses. 

3. Applications 

In this section we make a few applications of our results. We fmt consider some 
problems arising in the conformal field theory treatment of second-order phase 
transitions in two-dimensional systems, which provided the original motivation for 
this work. Then a new inequality for the Jacobian elliptic function sn U is derived. We 
also recall a connection wih previous research on scattering theory. 

Consider a two-dimensional system confined to the upper half-plane at a confor- 
mally invariant second-order phase transition [8]. Now lix the thermodynamic state of 
the system boundaly-the real axis, for the half-plane. Let the boundary state be A 
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for x<x,, x>x2  (with xl<xz) and B between x1 and x2. Then a (thermodynamic) 
domain boundary will be created. It (generally-see [SI) lies along a half-circle, with 
centre on the real axis, at (x2-x3/2. Such a domain boundary is in fact created by 
boundary operators @(x)  [9,lO] at the points (x,, q). Its extra free energy, i.e. the free 
energy difference between the system with a domain boundary and one with the single 
boundary state A (or E )  along the entire system boundary, is given by 

E =  - W ( x l ) q W )  (26) 
where the brackets denote a boundary operator correlation function. This function 
has a particularly simple form in the half-plane 

1 
( ~ ( x 1 ) ~ ( x 2 ) ) = ( x ~ - x l ) ~  (27) 

where A is the critical dimension of the boundary operator, a pure number that 
depends on the universality class of the phase transition and the two boundary states 
involved. In the following, we assume (as is generally the case) that A 3 0 .  Thus the 
domain boundary energy in the upper half-plane is given by [S] 

Em = 2A Inlxl - xzI. (28) 
It should be recognized that a domain boundary at criticality behaves rather 

differently from that in the usual situation. For example, its energy is not proportional 
to its length, and due to critical fluctuations, its position can only be defined on the 
average. See [SI and references therein for a more complete discussion. 

Now in fact (26) is valid in any two-dimensional region, as long as the appropriate 
correlation function is used. But the functional form of the correlation function in any 
geometry attainable via a conformal map w =  w(z )  of the half-plane follows immedia- 
tely from the basic statement of conformal invariance of correlation functions [U]. 
Consider maps w and points (x l ,  x2) satisfying the conditions of section 2, so that the 
domain boundary runs between points on the real axis in the new geometry as well as 
in the half-plane. In these circumstances one finds immediately that 

E,= 2A In1 (x ,  -xz) (U ;U;)"'[, (29) 
where x is to be taken a function of U, and the domain boundary runs between the 
points u l = u ( x l )  and &=u(x2).  

Now in general Elr2#Ew since both the geometries and the point locations differ. 
However we may pick (xl, x2) = (ul, u2) in (29), so that only the geometry is changed. 
In the new geometry, there are fewer paths from U, to 4, since (by hypothesis) w 
shrinks the half-plane. Therefore one expects the correlation fuction to be smaller, 
and by (26) Ew>EI,> It was this heuristic argument [12] that motivated the work 
presented here. Theorem 2 establishes this increase of the energy. Similarly, theorem 
3 demonstrates that E,>E,. These results have many non-trivial consequences for 
domain boundary energies in restricted geometries, as explained in detail elsewhere 

As a simple example of the above, consider the map of the upper half-plane to a 
[121. 

horizontal strip of width L defined by 

L 
w =  - In(z). 

A 

Ifx,rx,>O, the conditions of the theorem are satisfied. Then one has the 'bubble' of 
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[8], with the points uI and U, on the lower edge of the strip. Here 

and (10) reduces to 

y<sinh(y), (31) 
where y=x(u,-u,)/2L>O. For x2>O>xI, the two points are mapped to opposite 
sides of the strip (the ‘wall’ configuration [SI), the theorem does not apply, and the 
statement corresponding to (31) (with the sinh replaced by cosh) is incorrect. 

Replacintg (30) by a projective (bilinear) transformation, 
a z + b  
c z + d  (32) w=- 

with ab - cd#O, one fmds that the functional form of the energy (and the correlation 
function) is invariant. Here, as mentioned above, the inequality is saturated and the 
domain boundary energy E invariant (for the same separation of end points) [12]. In 
this case the half-plane can be mapped into a circle C. Then the mapped domain 
boundary follows the arc of a second circle, contained in Cand intersecting it at right 
angles. Consider the straight line L between the end points of the domain boundary in 
C. The energy remains invariant because the reduction of paths caused by shrinking 
the half-plane to a circle on one side of L is exactly compensated by the addition of 
paths caused by the ‘bowing out’ of the segment of the real axis x into an arc of the 
circle Con the other side of L .  

Equation (21) also has some implications for two-dimensional phase transitions. 
Consider a geometry attainable from the half-plane via a conformal map w= ~(2). 
Then the (thermodynamic average) stress tensor (T) in the w geometry is proportional 
to the Schwarzian derivative {w. z}, with a constant of proportionality that has a 
constant sign on the real z axis. On the other hand, the integral of (T) along the real 
axis contributes to a term in the free energy of the system. Whenever the central 
charge c> 0 (which is the case for most transitions of physical interest), this contribu- 
tion is of the same sign as the elastic energy of a system under tension. For a rectangle, 
for instance, there is a contribution of this sign along each edge, since the Schwarzian 
derivative is invariant under rotations and translations. The resulting overall term in 
the free energy provides a thermodynamic force for the elongation of the system [13]. 
It may be attributed to an attraction between the edges of the rectangle. Such 
elongation effects may have been observed experimentally 1141. For more details on 
the treatment of these terms, see [13, U]. 

Equation (21) shows that such effects will be present quite generally. Conversely, 
the fact that {u,  x } S O  for an indentation, demonstrated above, implies that near such 
a feature this term is of the same sign as an elastic system under compression. 

Consider now the Schwarz-Christoffel transformation, which maps the upper half- 
plane into a rectangle. This may be expressed via the Jacobian elliptic function [I61 

The inverse of (33) maps the points x = f 1, f Ilk on the real axis onto the corners of 
the rectangle at w = r t K ( k ) ,  k K ( k ) + i K ‘ ( k ) ,  respectively, where K and K ‘  are 
complete elliptic integrals of the first kind with modulus O<k< 1. Choose both points 
x, = O  and x , = u < K ( k ) .  Making use of theorem 3, equation (30) and the ‘bubble’ 

z = sn(w). (33) 
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energy quoted above to compare the rectangle with a strip of width K' gives 

sdu c' , (2; j j z  
3 -smh 7 c n u d n u  

where cn and dn are Jacobian elliptic functions. Each side of (34) being positive, one 
can invert and integrate between the limits 0<6<u.  Letting 6+0, the leading 
(divergent) terms cancel and the remainders vanish, except the contributions of the 
upper limit of integration. On inversion and multiplication by - 1, these give 

( 2 7 )  
2K' 

snu4-tanh 7 
JE (35) 

for O < u < K .  To our knowledge, (35) is a new result. For u+O, the inequality 
saturates, the effects of the finite geometries becoming unimportant. For k + l ,  the 
rectangle becomes an infinite horizontal strip of width K' = n12, sn U --). tanh U, and 
the inequality saturates, as it should since both geometries are the same. For k+O, 
K ' - t - ,  K + n / 2 ,  snu-ts inu,  andtheinequalityreducestosinusu. 

Equation (35) may also be obtained directly from (16) with g= e("'K')", h = sn U, 
setting U,=-U, % = - E ,  u ~ = E ,  u,=u; E , u > O  and taking the limit E + O .  Further 
results for the Jacobian elliptic functions obtained along these lines will be published 
elsewhere (171. 

Finally we mention that use has been made of monotone matrix functions in the 
theory of scattering (18,191. These papers consider the R matrix, which connects 
matrix elements of the wavefunction with matrix elements of its normal derivative on 
a given surface. It is argued that the kernel formed from this matrix, considered as a 
function of the enery E, is positive definite, and hence R is the restriction to the real 
axis of a conformal map of the half-plane into itself. The consequences of this are used 
to established a causality condition and the existence. of a particular expansion for R. 
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